Rabu, 09 Mei 2012

Masalah Radiasi Tegangan Tinggi



 [SUTET.png] 
Rencana pemerintah untuk meningkatan kesejahteraan rakyat melalui industrialisasi tampaknya merupakan suatu rencana yang patut didukung oleh semua pihak. Berbagai investasi dalam bidang industri pada saat ini telah banyak dilakukan oleh pihak swasta, baik melalui penanaman modal dalam negeri (PMDN) maupun melalui penanaman modal asing (PMA). Sedangkan dari pihak pemerintah sendiri rupanya juga sudah cukup banyak yang dikerjakan melalui sektor industri, antara lain melalui kiprah Badan Usaha Milik Negara (BUMN) yang tergabung dalam kelompok industri strategis (BPIS) dan juga melalui industri petrokimia, industri semen, industri logam dan industri berat lainnya.

Tidak bisa dipungkiri bahwa semua kegiatan industri seperti di atas hanya dapat berjalan apabila tenaga listrik tersedia cukup memadai. Untuk mengatasi kebutuhan tenaga listrik tersebut, pihak pemerintah juga sudah memikirkannya antara lain melalui pembangunan pembangkit tenaga listrik berskala besar seperti yang ada di PLTU Suralaya (Jawa Barat), PLTU Paiton (Jawa Timur) dan PLTU Tanjung Jati (Jawa Tengah).

Selain dari itu, pemerintah juga mengizinkan kepada pihak swasta untuk menanamkan modal dalam bidang penyediaan tenaga listrik dalam rangka pemenuhan kebutuhan listrik untuk industrialisasi. Hanya saja penjualan tenaga listrik yang dihasilkan oleh swasta kepada konsumen masih tetap melalui PLN sesuai dengan ketentuan perundangan yang berlaku.

Interkoneksi dan Transmisi Tenaga listrik

Pembangunan dalam sektor industri pada saat ini, sebenarnya merupakan kelanjutan pembangunan dari sektor-sektor lainnya yang telah dilakukan pada PJP I yang lalu. Pada PJP II ini pembangunan sektor industri diarahkan untuk menuju kepada kemandirian perekonomian nasional, meningkatkan kemampuan bersaing dan menaikkan pangsa pasar baik pangsa pasar dalam negeri maupun pangsa pasar luar negeri.

Untuk dapat melakukan pembangunan sektor industri, masalah tenaga listrik merupakan salah satu faktor penentu yang harus diperhatikan dengan cermat. Kenaikan penyediaan tenaga listrik (daya terpasang kumulatif) sejak awal Pelita I sampai dengan akhir PJP I yang lalu, tampaknya merupakan indikasi keseriusan pemerintah untuk melakukan pembangunan sektor industri, seperti yang tampak pada grafik (terlampir).

Ketersediaan tenaga listrik selama PJP I yang meningkat pesat dengan laju pertumbuhan rata-rata 12,4 % per tahun dan pada akhir PJP I meningkat menjadi 17,5 % per tahun melebihi angka yang direncanakan yaitu 14,6 % per tahun. Laju pertumbuhan konsumsi tenaga listrik di Indonesia ternyata di atas angka rata-rata di Asia yang hanya sekitar 7,9 % per tahun dan jauh di atas rata-rata petumbuhan konsumsi tenaga listrik dunia yang hanya sekitar 3,6 % per tahun. Laju pertumbuhan tenaga listrik yang tinggi ini dapat dicapai dengan mengembangkan sistem jaringan terpadu.

Pengembangan sistem jaringan terpadu meliputi sistem interkoneksi pusat-pusat pembangkit tenaga listrik yang ada serta membangun sistem transmisi dari pusat pembangkit ke gardu induk. Pada saat ini interkoneksi di Indonesia baru dilaksanakan di Pulau Jawa, yaitu dengan sistem tegangan tinggi (75 kV dan 150 kV) serta tegangan ekstra tinggi (500 kV) yang menghubungkan beberapa PLTA dan PLTU yang terdapat di Jawa Barat, Jawa Tengah dan Jawa Timur, yaitu antara pusat pembangkit di Suralaya, Saguling, Semarang, Gresik dan Paiton. Sedangkan sistem distribusi (penyaluran) di Indonesia saat ini menggunakan tegangan 20 kV untuk primer dan 220/380 V untuk sekunder dengan frekuensi 50 Hz.

Tujuan dari sistem interkoneksi dan transmisi secara terpadu ini antara lain untuk meningkatkan kemampuan suplai tenaga listrik, agar pada saat terjadi gangguan pada salah satu pusat pembangkit tidak terlalu berpengaruh pada konsumen. Sebagai contoh gangguan adalah pada PLTA yang sangat dipengaruhi oleh debit air, tandon air, limpahan dan daya muatnya. Sedangkan pada PLTU gangguan dapat berasal dari efisiensi kerja ketel uap, turbin dan sistem peralatan lainnya.

Sistem interkoneksi dan transmisi tersebut sering pula dinamakan dengan sistem Saluran Udara Tegangan (Ekstra) Tinggi yang sering disingkat dengan SUTET. Sistem interkoneksi dan transmisi tersebut saat ini memang harus dilakukan agar sistem jaringan terpadu dalam rangka pemenuhan kebutuhan tenaga listrik dapat dicapai. Namun dengan meningkatnya kesadaran masyarakat tentang masalah keselamatan kerja dan keselamatan lingkungan, maka masalah interkoneksi dan transmisi (SUTET) dengan tegangan tinggi atau ekstra tinggi menjadi suatu persoalan yang harus diperhatikan dengan cermat apabila jaringan tegangan tinggi tersebut melewati daerah permukiman.

Kasus jaringan tegangan tinggi yang melewati daerah Gresik dan daerah Parung kiranya dapat menjadi pelajaran yang menarik untuk perencanaan interkoneksi dan transmisi pada masa mendatang. Apa yang menyebabkan masyarakat menjadi cemas bila daerahnya dilewati jaringan tegangan tinggi, tidak lain adalah karena rasa khawatir dan takut terkena radiasi tegangan tinggi. Apa sebenarnya radiasi tegangan tinggi tersebut akan dibahas pada uraian berikut ini.

Apakah Radiasi Tegangan Tinggi itu?


Masalah radiasi tegangan tinggi sebenamya sudah sejak lama dipikirkan oleh para ahli, paling tidak semenjak James Clark Maxwell mengumumkan teorinya tentang :A dynamic theory of the electromagnetic field, suatu teori revolusioner tentang pergeseran arus yang diramalkan dapat menimbulkan gelombang elektromagnet yang merambat dengan kecepatan cahaya. Pada waktu teori tersebut diumumkan (tahun 1865) Maxwell belum menyebutnya sebagai suatu radiasi seperti yang kita kenal saat ini.

Secara teoritis elektron yang membawa arus listrik pada jaringan tegangan tinggi akan bergerak lebih cepat bila perbedaan tegangannya makin tinggi. Elektron yang membawa arus listrik pada jaringan interkoneksi dan juga pada jaringan transmisi, akan menyebabkan timbulnya medan magnet maupun medan listrik. Elektron bebas yang terdapat dalam udara di sekitar jaringan tegangan tinggi, akan terpengaruh oleh adanya medan magnet dan medan listrik, sehingga gerakannya akan makin cepat dan hal ini dapat menyebabkan timbulnya ionisasi di udara. Ionisasi dapat terjadi karena elektron sebagai partikel yang bermuatan negatif dalam gerakannya akan bertumbukan dengan molekul-molekul udara sehingga timbul ionisasi berupa ion-ion dan elektron baru. Proses ini akan berjalan terus selama ada arus pada jaringan tegangan tinggi dan akibatnya ion dan elektron akan menjadi berlipat ganda terlebih lagi bila gradien tegangannya cukup tinggi. Udara yang lembab karena adanya pepohon di bawah jaringan tegangan tinggi akan lebih mempercepat terbentuknya pelipatan ion dan elektron yang disebut dengan avalanche.

Akibat berlipatgandanya ion dan elektron ini (peristiwa avalanche) akan menimbulkan korona berupa percikan busur cahaya yang seringkali disertai pula dengan suara mendesis dan bau khusus yang disebut dengan bau ozone. Peristiwa avalanche dan timbulnya korona akibat adanya medan magnet dan medan listrik pada jaringan tegangan tinggi inilah yang sering disamakan dengan radiasi gelombang elektromagnet atau radiasi tegangan tinggi.

Berbahayakah Radiasi Tegangan Tinggi itu?


Secara umum setiap bentuk radiasi gelombang elektromagnet dapat berpengaruh terhadap tubuh manusia. Sel-sel tubuh yang mudah membelah adalah bagian yang paling mudah dipengaruhi oleh radiasi. Tubuh yang sebagian besar berupa molekul air, juga mudah mengalami ionisasi oleh radiasi. Seberapa jauh pengaruhnya terhadap tubuh manusia, tergantung pada batas-batas aman yang diizinkan. Sebagai contoh untuk radiasi nuklir yang aman bagi manusia (untuk pekerja radiasi) adalah dosis di bawah 5000 mili Rem per tahun, sedangkan untuk masyarakat umum adalah 10 % dari harga tersebut. Lantas bagaimanakah dengan batasan aman untuk radiasi tegangan tinggi?

Sejauh ini batasan aman untuk radiasi tegangan tinggi masih terus diteliti dan para ahli di seluruh dunia masih belum sampai kepada kata sepakat tentang batasan aman tersebut. Penelitian pengaruh radiasi tegangan tinggi sejauh ini baru diketahui akibatnya terhadap binatang percobaan di laboratorium. Radiasi tegangan tinggi (radiasi elektromagnet) ternyata mempengaruhi sifat kekebalan (imun) tikus-tikus percobaan.

Apakah radiasi tegangan tinggi juga bersifat cocarcinogenik (merangsang timbulnya kanker), ternyata masih dalam taraf dugaan saja, karena tikus-tikus percobaan yang dikenai radiasi tegangan tinggi tidak ada yang menjadi terserang kanker, walaupun diramalkan kemungkinan terkena kanker dapat meningkat karenanya. Memang terdapat perbedaan antara manusia dan tikus, sehingga penelitian terhadap tikus-tikus tersebut mungkin lain hasilnya terhadap manusia. Walaupun demikian, usaha manusia untuk mengurangi dampak teknologi berupa jaringan interkoneksi dan transmisi tegangan tinggi yang dapat menimbulkan kemungkinan terkena radiasi tegangan tinggi tetap perlu dilakukan, agar diperoleh kepastian mengenai harga batas aman bagi manusia.

Satuan untuk mengukur radiasi tegangan tinggi tidaklah sama dengan satuan untuk radiasi nuklir yang menggunakan satuan REM, singkatan Rontgen Equivalent of Man. Satuan radiasi tegangan tinggi masih menggunakan satuan Weber/meter2, yaitu satuan flux dalam sistem mks. Mengingat bahwa l Weber/m2 sama dengan 104 gauss, sedangkan satuan untuk induksi magnetik telah ditentukan dengan satuan Tesla yang besarnya sama dengan 104 gauss, maka satuan radiasi tegangan tinggi dapat juga menggunakan satuan Tesla yang identik dengan Weber/m2.

Walaupun belum ada kata sepakat untuk menentukan batas aman bagi radiasi tegangan tinggi, namun Amerika Serikat sebagai negara industri yang banyak menggunakan jaringan tegangan tinggi, telah menetapkan batas aman sebesar 0,2 mikro Weber/m2. Sedangkan Rusia (bekas Uni Sovyet) menetapkan batas aman radiasi tegangan tinggi dengan faktor 1000 lebih rendah dari yang telah ditetapkan Amerika Serikat. Adanya perbedaan penetapan batas aman ini disebabkan karena penelitian mengenai dampak radiasi tegangan tinggi terhadap manusia masih belum selesai dan masih terus dilakukan. Hal menarik dari penentuan harga batas aman tersebut adalah bahwa Amerika Serikat yang menetapkan harga batas aman tersebut adalah Radiation Protection Board, sedangkan di Rusia oleh Ministry Of Health (Departemen Kesehatan), sedangkan di Australia oleh Australian Radiation Protection Society (ARPS), suatu lembaga non pemerintah.

Lantas bagaimanakah dengan di Indonesia? Siapakah yang akan menetapkan harga batas aman radiasi tegangan tinggi? Apakah BATAN, apakah Departemen Perindustrian, apakah Departemen Kesehatan, apakah Menteri Negara Lingkungan Hidup ataukah pihak PLN sendiri yang banyak berkaitan dengan masalah jaringan tegangan tinggi. Masalah ini kiranya perlu segera ditetapkan, mengingat bahwa PLN masih akan membangun jaringan tegangan tinggi sebagai interkoneksi dan transmisi sepanjang 2000 km.

Mudah-mudahan penetapan batas aman radiasi tegangan tinggi di Indonesia berdasarkan pertimbangan yang matang, sehingga masyarakat tidak menjadi takut dan khawatir bila daerahnya akan dilewati jaringan tegangan tinggi. Selain dari itu, penjelasan yang transparan dari pihak PLN kepada masyarakat perlu diberikan, agar program interkoneksi dan transimisi dapat berjalan lancar, sehingga program pembangunan sektor industri dapat dilaksanakan dengan sebaik-baiknya yang pada akhirnya kesejahteraan masyarakat diharapkan akan dapat meningkat. Semoga.

TEGANGAN TINGGI


Keandalan dan Kualitas Listrik


Sistem Tenaga Listrik

Untuk lebih mudah memahami keandalan dan kualitas listrik, kita harus mengetahui apa yang dinamakan “Sistem Tenaga Listrik” yang akan mempresentasikan cara pembangkitan, penyaluran dan pendistribusian energi listrik.
Secara umum sistem tenaga listrik terdiri dari:

1. Pusat Pembangkit Listrik (Power Plant);
Yaitu tempat energi listrik pertama kali dibangkitkan, dimana terdapat turbin sebagai penggerak mula (prime mover) dan generator yang membangkitkan listrik. Biasanya di pusat pembangkit listrik juga terdapat gardu induk (GI). Peralatan utama pada gardu induk antara lain: Transformer, yang berfungsi untuk menaikkan tegangan generator (11,5 kV) menjadi tegangan transmisi / tegangan tinggi (150 kV) dan juga peralatan pengaman dan pengatur. Jenis pusat pembangkit yang umum antara lain: PLTA (Pusat Listrik Tenaga Air), PLTU (Pusat Listrik Tenaga Uap), PLTG (Pusat Listrik Tenaga Gas), PLTN (Pusat Listrik Tenaga Nuklir).

2. Saluran Transmisi (Transmission Line);

Berupa kawat-kawat yang di pasang pada menara atau tiang dan bisa juga melalui kabel yang di pendam di bawah permukaan tanah, saluran transmisi berfungsi menyalurkan energi listrik dari pusat pembangkit, yang umumnya terletak jauh dari pusat beban, ke gardu induk penurun tegangan yang memiliki transformer penurun tegangan dari tegangan transmisi ke tegangan distribusi (menengah). Saluran transmisi ini mempunyai tegangan yang tinggi agar dapat meminimalkan rugi-rugi daya (power losses) disaluran. Contoh dari saluran transmisi di Indonesia adalah : SUTT (Saluran Udara Tegangan Tinggi, dengan tegangan kerja 70--150 kV), SUTET (Saluran Udara Tegangan Ekstra Tinggi, dengan tegangan kerja 500 kV).


3. Sistem Distribusi;
Yang merupakan sub-sistem tersendiri yang terdiri dari: Pusat Pengatur Distribusi ( Distribution Control Centre, DCC ) , Saluran tegangan menengah (6 kV dan 20 kV, biasa juga disebut tegangan distribusi primer) yang merupakan saluran udara atau kabel tanah, Gardu Distribusi (GD) tegangan menengah yang terdiri dari panel-panel pengatur tegangan menengah dan trafo sampai dengan panel-panel distribusi tegangan rendah (380 V, 220 V) yang menghasilkan tegangan kerja/tegangan jala-jala untuk industri dan konsumen perumahan.

Pentingnya Keandalan dan Kualitas Listrik

Pemadaman listrik yang terlalu sering dengan waktu padam yang lama dan tegangan listrik yang tidak stabil, merupakan refleksi dari keandalan dan kualitas listrik yang kurang baik, dimana akibatnya dapat dirasakan secara langsung oleh pelanggan.

Sistem tenaga listrik yang andal dan energi listrik dengan kualitas yang baik atau memenuhi standar, mempunyai kontribusi yang sangat penting bagi kehidupan masyarakat modern karena peranannya yang dominan dibidang industri, telekomunikasi, teknologi informasi, pertambangan, transportasi umum, dan lain-lain yang semuanya itu dapat beroperasi karena tersedianya energi listrik. Perusahaan-perusahaan yang bergerak diberbagai bidang sebagaimana disebutkan diatas, akan mengalami kerugian cukup besar jika terjadi pemadaman listrik tiba-tiba atau tegangan listrik yang tidak stabil, dimana aktifitasnya akan terhenti atau produk yang dihasilkannya menjadi rusak atau cacat.

Negara-negara yamg memiliki sistem pembangkit, transmisi dan distribusi energi listrik dengan teknologi dan peralatan mutakhir serta manajemen yang baik seperti Amerika Serikat, Jepang, Perancis dan negara-negara maju lainnya benar-benar memberikan perhatian khusus terhadap keandalan dan kualitas listrik karena pengaruhnya yang krusial terhadap roda perekonomian.

Parameter-Parameter yang Menentukan Keandalan dan Kualitas Listrik

Ukuran keandalan dan kualitas listrik secara umum ditentukan oleh beberapa parameter sebagai berikut:

1. Frekuensi dengan satuan hertz (Hz);
Yaitu jumlah siklus arus bolak-balik (alternating current, AC) per detik. Beberapa negara termasuk Indonesia menggunakan frekuensi listrik standar, sebesar 50 Hz.

Frekuensi listrik ditentukan oleh kecepatan perputaran dari turbin sebagai penggerak mula. Salah satu contoh akibat dari frekuensi listrik yang tidak stabil adalah akan mengakibatkan perputaran motor listrik sebagai penggerak mesin-mesin produksi di industri manufaktur juga tidak stabil, dimana hal ini akan mengganggu proses produksi.

Gangguan-gangguan yang terjadi pada sistem frekuensi:
a. Penyimpangan terus-menerus (Continuous Deviation); frekuensi berada diluar batasnya pada saat yang lama (secara terus-menerus), frekuensi standar 50 Hz dengan toleransi 0,6 Hz ------ (49,4 – 50,6 Hz)
b. Penyimpangan sementara (Transient Deviation); penurunan atau penaikkan frekuensi secara tiba-tiba dan sesaat.

2. Tegangan atau voltage dengan satuan volt (V);
Tegangan yang baik adalah tegangan yang tetap stabil pada nilai yang telah ditentukan. Walaupun terjadinya fluktuasi (ketidak stabilan) pada tegangan ini tidak dapat di hindarkan, tetapi dapat di minimalkan.

Gangguan pada tegangan antara lain :
a. Fluktuasi Tegangan; seperti: Tegangan Lebih (Over Voltage), Tegangan Turun (Drop Voltage) dan tegangan getar (flicker voltage)

Tegangan lebih pada sistem akan mengakibatkan arus listrik yang mengalir menjadi besar dan mempercepat kemunduran isolasi (deterioration of insulation)
sehingga menyebabkan kenaikan rugi-rugi daya dan operasi, memperpendek umur kerja peralatan dan yang lebih fatal akan terbakarnya peralatan tersebut. Peralatan-peralatan yang dipengaruhi saat terjadi tegangan lebih adalah transformer, motor-motor listrik, kapasitor daya dan peralatan kontrol yang menggunakan coil/kumparan seperti solenoid valve, magnetic switch dan relay. tegangan lebih biasanya disebabkan karena eksitasi yang berlebihan pada generator listrik (over excitation), sambaran petir pada saluran transmisi, proses pengaturan atau beban kapasitif yang berlebihan pada sistem distribusi.

Tegangan turun pada sistem akan mengakibatkan berkurangnya intensitas cahaya (redup) pada peralatan penerangan; bergetar dan terjadi kesalahan operasi pada peralatan kontrol seperti automatic valve, magnetic switch dan auxiliary relay; menurunnya torsi pada saat start (starting torque) pada motor-motor listrik. Tegangan turun biasanya disebabkan oleh kurangnya eksitasi pada generator listrik (drop excitation), saluran transmisi yang terlalu panjang, jarak beban yang terlalu jauh dari pusat distribusi atau peralatan yang sudah berlebihan beban kapasitifnya.

b.Tegangan Kedip (Dip Voltage); adalah turunnya tegangan (umumnya sampai 20%) dalam perioda waktu yang sangat singkat (dalam milli second). Penyebabnya adalah hubungan singkat (short circuit) antara fasa dengan tanah atau fasa dengan fasa pada jaringan distibusi. Tegangan kedip dapat mengakibatkan gangguan pada: stabilisator tegangan arus DC, electromagnetic switch, variable speed motor, high voltage discharge lamp dan under voltage relay.

c. Harmonik Tegangan (Voltage Harmonic); adalah komponen-komponen gelombang sinus dengan frekuensi dan amplitudo yang lebih kecil dari gelombang asalnya (bentuk gelombang yang cacat), contoh :
t) kV.
wGelombang asal : (28,3) sin (
t) kV.
wHarmonik ke-3 : (28,3/3) sin (3
t) kV.
wHarmonik ke-5 : (28,3/5) sin (5

Tegangan harmonik dapat mengakibatkan: panas yang berlebihan, getaran keras, suara berisik dan terbakar pada peralatan capacitor reactor (power capacitor); meledak pada peralatan power fuse (power capacitor); salah beroperasi pada peralatan breaker; suara berisik dan bergetar pada peralatan rumah tangga (seperti TV, radio, lemari pendingin dsb.); dan pada peralatan motor listrik, elevator dan peralatan-peralatan kontrol akan terjadi suara berisik, getaran yang tinggi, panas yang berlebihan dan kesalahan operasi. Kontribusi arus harmonik akan menyebabkan cacat (distorsi) pada tegangan, tergantung seberapa besar kontribusinya.

Cara mengurangi pengaruh tegangan harmonik yang terjadi pada sistem adalah dengan memasang harmonic filter yang sesuai pada peralatan-peralatan yang dapat menyebabkan timbulnya harmonik seperti arus magnetisasi transformer, static VAR compensator dan peralatan-peralatan elektronika daya (seperti inverter, rectifier, converter, dsb.)

d. Ketidak seimbangan tegangan (Unbalance Voltage); umumnya terjadi di sistem distribusi karena pembebanan fasa yang tidak merata.

Gangguan-gangguan tegangan sebagaimana dijelaskan diatas dapat menyebabkan peralatan-peralatan yang menggunakan listrik, beroperasi secara tidak normal dan yang paling fatal adalah kerusakan atau terbakarnya peralatan.

3. Interupsi atau Pemadaman Listrik;
Interupsi ini dapat dibedakan menjadi:
a. Pemadaman yang direncanakan (Planned Interruption/scheduled interruption); adalah pemadaman yang terjadi karena adanya pekerjaan perbaikan atau perluasan jaringan pada sistem tenaga listrik.
b. Pemadaman yang tidak direncanakan (Unplanned Interruption); adalah pemadaman yang terjadi karena adanya gangguan pada sistem tenaga listrik seperti hubung singkat (short circuit).

Parameter-parameter yang menentukan keandalan dan kualitas listrik sebagaimana dijelaskan diatas adalah sesuatu yang meyakinkan (measureable) dan dapat diminimalkan dengan cara mengkoreksi terhadap konfigurasi dan peralatan pada sistem, manajemen serta sumber daya manusia yang handal dari perusahaan yang menjual energi listrik.

kalkulasi tegangan jatuh listrik



Apa arti praktis kalkulasi tegangan jatuh listrik bagi seorang perencana listrik ketenagaan? Kalkulasi ini adalah sama artinya dengan perencanaan ukuran-ukuran kabel daya dan sistem proteksi listrik ketenagaan yang aman suatu bangunan atau utilitas plant. Contohnya jika seorang insinyur listrik diminta untuk merancang ukuran kabel 3-fasa untuk suatu pompa submersible listrik 150 HP, 380 V yang akan digunakan sebagai pompa banjir( katakan banjir lumpur Porong Sidoarjo). Pompa tersebut berjarak 125 meter dari sumber listriknya(atau panel induknya), berapa ukuran kabel yang aman, tidak panas tetapi ekonomis, kemudian berapa ukuran rating pemutus tenaga (Circuit Breaker atau Fuse) agar dapat memproteksi kabel secara aman terhadap beban lebih.

Seorang mahasiswa calon insinyur atau ahli madya yang serius belajar disiplin ilmunya seharusnya menguasai program spread-sheet excel sehingga kalkulasi kelistrikan secara umum akan lebih cepat difahami, dilatih, dan diingat terus sebagai pegangan bagi seorang praktisi listrik ketenagaan. Karena variabel-variabel ukuran kabel yang banyak, dan pembebanan arus yang juga bervariasi tergantung dari kebutuhan beban listrik, maka menggunakan program excel adalah merupakan keharusan. Berikut ini bentuk formulasi dasar tegangan jatuh dalam bentuk format excel/ppt yang dapat dikembangkan lebih jauh untuk aplikasi yang berbeda.

Kalkulasi tegangan jatuh listrik sebenarnya berdasarkan hukum Ohm kemudian ditambahkan faktor reaktansi (induktif atau kapasitif) dan faktor daya, maka formulasinya untuk aplikasi tegangan rendah sampai tegangan menengah 20 KV dapat ditulis sbb :

Tegangan jatuh = 1.732*R*I*cos f + 1.732*X*I*sin f

dimana 1.732 adalah hasil akar 3 ( beban 3-fasa), I adalah arus beban, R adalah resistansi arus bolak-balik AC ( bukan arus searah DC) , X adalah reaktansi induktif, dan cos f adalah faktor daya.

Kemudian data-data resistansi kabel dapat dicari dari buku katalog spesifikasi kabel seperti Supreme, Kabel Metal, Kabelindo, Tranka, Voksel yang bisa diminta langsung ke fabrikannya atau produk luar negeri untuk industri perminyakan seperti Pirelli atau Okonite. Data resistansi kabel pada umumnya disajikan dalam bentuk satuan Ohm per-kilometer sebagai resistansi arus searah DC, artinya resistansi terbaca jika kita mengukur dengan alat ukur Ohm-meter. Yang kita perlukan adalah resistansi AC (arus bolak-balik), kalau ditampilkan resistansi AC pada suhu 90 derajat Celsius maka resistansinya menjadi lebih besar. Umumnya suhu inti konduktor kabel yang diizinkan adalah 70 derajat Celsius, jadi resistansinya lebih kecil dari tabel.

Rumus tegangan jatuh diatas dapat diaplikasikan untuk arus searah DC maka faktor daya = 1 sehingga formulasinya untuk kabel 2 jalur adalah Tegangan jatuh = 2*R*I dimana R adalah resistansi DC ( hasil pengukuran alat Ohm-meter) dan I adalah arus searah DC.

Berapa jatuh tegangan kerja yang diizinkan. Jika tegangan rumah 220 Volt dan misalnya kita menerima dari sumber PLN hanya 200 Volt berari jatuh tegangan 10%, maka hal ini akan mengganggu performance motor listrik mesin pendingin (Air Conditioner atau Kulkas) atau pompa air. Jatuh tegangan maksimum 5% dari sumber ke beban konsumen masih dapat diterima sistem (misalnya sumber 400 Volt dan kita sebagai konsumen menerima tegangan kerja setelah dibebani sebesar 380 Volt), tetapi untuk perencanaan terkadang ada yang menetapkan 2,5 %, tergantung untuk aplikasi dimana dan semuanya akan mempengaruhi total biaya instalasi
listrik.

Sebagai referensi online, pembaca dapat meng-click link-link situs
Okonite atau General Electric untuk studi perbandingan aplikasi tegangan jatuh, tetapi ingat rating tegangan listrik Amerika berbeda dengan Indonesia, jadi kita harus mengkonversikan dahulu dan pula mereka menggunakan standar ukuran kabel AWG( lihat tabel konversi AWG dan mm2 dibawah). Silahkan pembaca melatih formulasi tegangan jatuh ini dengan excel dengan data dari berbagai sumber dan silahkan dikembangkan lebih jauh.

Selasa, 01 Mei 2012

controlling

Pengertian Controlling atau pengawasan

Pengertian Controlling di dalam bahasa Indonesia dapat ditafsirkan sebagai
pengawasan atau pengendalian sehingga dalam bahasa Inggris pengertian
pengawasan dan pengendalian tetap dipergunakan dengan Istilah controlling.
Controlling baik yang dalam pengertian pengawasan atau pengendalian oleh sebagian besar masyarakat sering ditafsirkan sebagai usaha dari manajer atau lembaga pengawasan sebagai kegiatan untuk mencarikesalahan.22 Padahal fungsi pengawasan atau pengendalian tersebut adalah sebagaisalah satu keguatan untuk mengadakan perbaikan bila hasil atau jasa yangsudah distandarisasi itu tidak sesuai dengan hasil yang diharapkan.Standarisiasi merupakan salah satu tindakan awal dari prosesperencanaan dan standar itu harus terandalkan dan dapat dipercayai sebagai
dasar untuk mengevaluasi dan membandingkan dalam kegiatan pengawasan.
Standarisasi dari proses perencanaan ditujukan untuk pencapaiansasaran atau efektifitas organisasi. Sedang kontrol baik dalam pengertianpengawasan atau pengendalian itu lebih difokuskan pada hasil atauproduktifitas baik yang berupa barang atau jasa agar hasil usaha suatuorganisasi itu sangat efisien.Jadi kontrol dapat disimpulkan lebih memusatkan pada efisiensi danperencanaan atau planning lebih memusatkan pada efektivitas.

Beberapa pakar memberikan definisi controlling sebagai berikut:
a. George R. Terry
Pengawasan adalah untuk menentukan apa yang telah dicapai,
mengadakan evaluasi atasannya, dan mengambil tindakan-tindakan
korektif, bila diperlukan, untuk menjamin agar hasilnya sesuai dengan
rencana. b. Newman
Pengawasan adalah suatu usaha untuk menjamin agar pelaksanaan sesuai
dengan rencana.
c. Henry Fayol
Pengawasan terdiri dengan maksud untuk memperbaikinya dan mencegah
terulangnya kembali.
d. Soejamto
Segala usaha atau kegiatan untuk mengetahui sasaran obyek yang
diperiksa.
e. Sondang Siagian
Proses pengamatan daripada pelaksanaan seluruh kegiatan organisasi
untuk menjamin agar dimana pekerjaan yang sedang dilaksanakan
berjalan sesuai dengan rencana yang telah ditentukan sebelumnya
f. Soekarno K
Suatu proses yang menentukan tentang apa yang harus dikerjakan agar apa
yang diselenggarakan sejalan dengan rencana.

actuanting

Actuating(pelaksanaan)


Actuating adalah suatu tindakan untuk mengusahakan agarsemua agar semua anggota kelompok berusaha untuk mencapaisasaran yang sesuai dengan perencanaan manejerial dan usaha-usahaorganisasi. Jadi actuating artinya menggerakkan orang-orang agarmau bekerja dengan sendirinya atau dengan kesadaran secarabersama-sama untuk mencapai tujuan dikehendaki secara efektif.Dalam hal ini yang dibutuhka adalah kepemimpinan.Actuating adalah Pelaksanaan untuk bekerja. Untukmelaksanakan secara fisik kegiatan dari aktivitas tesebut, makamanajer mengambil tindakan-tindakannya kearah itu. Seperti : Leadership ( pimpinan ), perintah, komunikasi dan conseling( nasehat). Actuating disebut juga“ gerakan aksi “ mencakup kegiatan yangdilakukan seorang manager untuk mengawali dan melanjutkankegiatan yang ditetapkan oleh unsur-unsur perencanaan danpengorganisasian agar tujuan-tujuan dapat tercapai.Dari seluruh rangkaian proses manajemen, pelaksanaan(actuating) merupakan fungsi manajemen yang paling utama. Dalamfungsi perencanaan dan pengorganisasian lebih banyak berhubungandengan aspek-aspek abstrak proses manajemen, sedangkan fungsiactuating justru lebih menekankan pada kegiatan yang berhubunganlansung dengan orang-orang dalam organisasi. Dalam hal ini,George R. Terry (1986) mengemukakan bahwa actuating merupakanusaha menggerakkan anggota-anggota kelompok sedemikian rupahingga mereka berkeinginan dan berusaha untuk mencapai sasaranperusahaan dan sasaran anggota-anggota perusahaan tersebut olehkarena para anggota itu juga ingin mencapai sasaran tersebut. Dari pengertian di atas, pelaksanaan (actuating) tidak lainmerupakan upaya untuk menjadikan perencanaan menjadikenyataan, dengan melalui berbagai pengarahan dan pemotivasianagar setiap karyawan dapat melaksanakan kegiatan secara optimal sesuai dengan peran, tugas dan tanggung jawabnya.
Hal yang penting untuk diperhatikan dalam pelaksanan (actuating)ini adalah bahwa seorang karyawan akan termotivasi untukmengerjakan sesuatu jika :a. Merasa yakin akan mampu mengerjakan,b. Yakin bahwa pekerjaan tersebut memberikan manfaat bagidirinya,c. Tidak sedang dibebani oleh problem pribadi atau tugas lain yanglebih penting, atau mendesak,d. Tugas tersebut merupakan kepercayaan bagi yang bersangkutane. Hubungan antar teman dalam organisasi tersebut harmonis.Fungsi dari Pelaksanaan (actuating) adalah sebagai berikut:1. Mengimplementasikan proses kepemimpinan,pembimbingan, dan pemberian motivasi kepada tenagakerja agar dapat bekerja secara efektif dan efisien dalampencapaian tujuan2. Memberikan tugas dan penjelasan rutin mengenaipekerjaan3. Menjelaskan kebijakan yang ditetapkan4. Proses implementasi program agar dapat dijalankan olehseluruh pihak dalam organisasi serta proses memotivasiagar semua pihak tersebut dapat menjalankan tanggungjawabnya dengan penuh kesadaran danproduktifitas yang tinggi.

Sumber: 
http://id.shvoong.com/social-sciences/sociology/2205936-pengertian-pelaksanaan-actuating/#ixzz1t7deFhtq