Senin, 12 November 2012

IPTEK LUAR ANGKASA


Ledakan Bintang Paling Menakjubkan di Luar Angkasa

Supernova adalah ledakan dari suatu bintang di galaksi yang memancarkan energi lebih banyak dari nova. Peristiwa supernova ini menandai berakhirnya riwayat suatu bintang. Bintang yang mengalami supernova akan tampak sangat cemerlang dan bahkan kecemerlangannya bisa mencapai ratusan juta kali cahaya bintang tersebut semula, beberapa minggu atau bulan sebelum suatu bintang mengalami supernova bintang tersebut akan melepaskan energi setara dengan energi matahari yang dilepaskan matahari seumur hidupnya, ledakan ini meruntuhkan sebagian besar material bintang pada kecepatan 30.000 km/s (10% kecepatan cahaya)dan melepaskan gelombang kejut yang mampu memusnahkan medium antarbintang.
Nah berikut ini ada beberpa ledakan bintang paling Menakjubkan:

Garis X-ray Di Supernova Tycho
Gambar ini berasal dari Observasi Chandra yang sangat mendalam dari sisa – sisa super Tycho. X-ray bertenaga rendah (warna merah) memperluas puing – puing ledakan. Sedangkan X-ray warna Biru menunjukkan gelombang ledakan. Supernova seperti ini tidak pernah dilihat sebelumnya.

Supernova Casseopia A
Gambar ini menyajikan komposit sinar-X dari Chandra (merah, hijau, dan biru) dan data optik dari Hubble (emas) dari Cassiopeia A, sisa-sisa bintang raksasa yang meledak dalam supernova. Inset: Sebuah guntingan dari interior bintang neutron, dimana kepadatan meningkat dari kerak (oranye) ke inti (merah) dan akhirnya ke wilayah di mana “superfluida” ada (bola merah dalam).

Bukti Keberadaan Black Hole
Gambar Komposit menunjukkan supernova dalam galaksi M100 yang mungkin mengandung lubang hitam termuda yang dikenal di lingkungan kosmik kita. Lubang hitam akan menjadi sekitar 30 tahun dan lahir dari SN1976C supernova.

Bintang Meledak Menjadi Debu
Saat meneliti langit menggunakan teleskop, astronom Universitas Ohio State menemukan sebuah bintang sangat besar yang meledak menjadi debu. Kejadian ini membuktikan bahwa ada bintang yang sangat terang di luar galaksi kita.

Supernova Sharpnell di Dalam Meteroit
Gambar ini menggabungkan data yang diambil dalam sinar-X. Nicolas Dhaupas, dai Univeritas Chicago, telah menganalisa kejadian ini dan memperkirakan bintang ini sudah berumur 4,5 miliar tahun.

Bintang Baru Terbentuk
Dalam gambar ini terlihat, partikel – partikel gas dari bintang yang sudah meledak, kembali bersatu membentuk sebuah bintang yang baru.

Inti Bintang Yang Hilang
Gambar ini diambil teleskop Hubble Tahun 2004, dan ada keanehan, yaitu bintang ini tidak memiliki Inti sehinggan berbentuk seperti cincin

Meledaknya Perut Sebuah Bintang
Team Astronomi dari Universitas Collorado meneliti hubungan antara bintang yang berbentuk cincin dengan Supernova 1987A.

 Bintang Melepas Peluru Kosmik
Dalam gambar dapat dilihat ada peluru kosmis terlepas dari sebuah bintang meledak.

Bangkai Bintang Terkena angin
Sebuah gambar baru dari sinar-X Chandra NASA Observatory dan Spitzer Space Telescope menunjukkan berdebu sisa-sisa bintang runtuh. Gambar komposit G54.1 0,3 menunjukkan sinar-X dari Chandra dengan warna biru, dan data dari Spitzer dalam warna hijau (panjang gelombang lebih pendek inframerah) dan merah-kuning (lagi panjang gelombang inframerah). Para ilmuwan berpikir bahwa pulsar (sumber putih di tengah) sedang mengirim dari angin yang memanas sisa debu supernova.

Perbandingan Dua Ledakan
Perbedaan kedua gambar yaitu. Gambar kiri ledakan bintang besar, dan gambar kanan ledakan bintang kecil. Ledakan bintang kecil lebih simetris, sedangkan ledakan bintang besar tidak simetris (asimetris).

Sumber : http://palingseru.com/9682/ledakan-bintang-paling-menakjubkan-di-luar-angkasa

Minggu, 11 November 2012

Pembangkit Listrik Tenaga Angin Di Indonesia



Pembangkit Listrik Tenaga Angin Di Indonesia

Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Cara kerjanya cukup sederhana, energi angin yang memutar turbin angin, diteruskan untuk memutar rotor pada generator dibagian belakang turbin angin, sehingga akan menghasilkan energi listrik. Energi Listrik ini biasanya akan disimpan kedalam baterai sebelum dapat dimanfaatkan. Secara sederhana sketsa kincir angin adalah sebagai berikut :
sumber : http://www.kincirangin.info/plta-gbr.php
Indonesia, negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km merupakan wilayah potensial untuk pengembangan pembanglit listrik tenaga angin, namun sayang potensi ini nampaknya belum dilirik oleh pemerintah. Sungguh ironis, disaat Indonesia menjadi tuan rumah konfrensi dunia mengenai pemanasan global di Nusa Dua, Bali pada akhir tahun 2007, pemerintah justru akan membangun pembangkit listrik berbahan bakar batubara yang merupakan penyebab nomor 1 pemanasan global.
Syarat – syarat dan kondisi angin yang dapat digunakan untuk menghasilkan energi listrik dapat dilihat pada tabel berikut.
Angin kelas 3 adalah batas minimum dan angin kelas 8 adalah batas maksimum energi angin yang dapat dimanfaatkan untuk menghasilkan energi listrik.
Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Berdasarkan data dari WWEA (World Wind Energy Association), sampai dengan tahun 2007 perkiraan energi listrik yang dihasilkan oleh turbin angin mencapai 93.85 GigaWatts, menghasilkan lebih dari 1% dari total kelistrikan secara global. Amerika, Spanyol dan China merupakan negara terdepan dalam pemanfaatan energi angin. Diharapkan pada tahun 2010 total kapasitas pembangkit listrik tenaga angin secara glogal mencapai 170 GigaWatt.
Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun. Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit. Mengacu pada kebijakan energi nasional, maka pembangkit listrik tenaga bayu (PLTB) ditargetkan mencapai 250 megawatt (MW) pada tahun 2025.
sumber :
http://renewableenergyindonesia.wordpress.com/
http://www.kincirangin.info
Indrawan said, April 7, 2008 @ 4:13 am PLTB (pembangkit listrik tenaga bayu) saat ini cukup menjadi primadona di dunia barat dikarenakan potensi angin yang mereka miliki (daerah sub tropis) sangat besar. Berangsur-angsur tapi pasti, PLTN mulai diganti dengan penggunaan PLTB ataupun pembangkit renewable lainnya. Perlu diingat di lokasi-lokasi tersebut size kapasitas PLTB mereka sudah besar – besar (Min 1 MW). PLTB ukuran kecil seperti di Nusa penida dengan kapasitas 80 kW sangat teramat jarang sekarang ini. Untuk di Indonesia, dengan iklim tropisnya mungkin akan cukup sulit untuk menemukan daerah dengan potensi angin (distribusi anginnya)yang konstan/baik. Ada beberapa daerah di Indonesia yang katanya memiliki kecepatan angin cukup tinggi (gust wind) berdasarkan survei yang dilakukan selama 3 bulan, tapi hal ini tidak berguna bagi PLTB bila kecepatan angin itu hanya cuma bertahan beberapa menit/detik saja dan kemudian hilang. Perlu adanya survei/studi berkesinambungan yang memerlukan data selama minimal satu tahun untuk mevalidasi potensi angin didaerah tersebut. Rata-rata PLTB yang dijual di pasaran untuk kapasitas kecil (kurang dari 100 kW), cut in dan cut out mereka adalah 3 dan 25 m/s dengan kecepatan optimumnya adalah 12 m/s. Didunia saat ini banyak ditemukan PLTB stand alone yang beredar dipasaran (utk ukuran 10 kW). Penggunanya adalah daerah-daerah terpencil yang tidak tersentuh oleh ataupun terlalu mahal untuk dihubungkan oleh grid. Kebanyakan dari mereka tidak pure hanya menggunakan PLTB tapi juga menggunakan PV. Selain karena disebabkan kebutuhan listrik yang cukup besar juga disertai dengan diversikasi energi apabila tiba-tiba tidak terdapat angin yang cukup. Untuk memenuhi kebutuhan listrik di Indonesia saat ini untuk daerah-daerah terpecil seperti di kepulauan-kepulauan, diperlukan hybrid system antara potensi renewable energy yang ada dilokasi (seperti PLTB-PV-baterai, PV-PLTMH-Fuel Cell, dll). Akan tetapi perlu menjadi catatan, semua teknologi untuk penggunaan energi-energi tersebut masih cukup mahal bila dilihat dari kelayakan ekonominya terutama FC dan PV. Sekedar untuk info apabila ada yang tertarik untuk mengembangkan potensi renewable energy didaerahnya, anda bisa menggunakan standar IEC 62257 sebagai guidelines anda. Semoga info ini dapat membantu pengembangan renewable energy di Indonesia. Apabila ada kata-kata yang salah, saya mohon maaf dan tolong dikoreksi. Terima kasih

sumber : http://nugrohoadi.wordpress.com/2008/05/03/pembangkit-listrik-tenaga-angin-di-indonesia/


Senin, 29 Oktober 2012

SUMBER DAYA ALAM

 KEANEKARAGAMAN SUMBER DAYA ALAM HAYATI DAN KONSERVASINYA

14 Juni 2007 in Lingkungan-Hidup



Realita hidup dan kehidupan manusia tidak terlepas dari alam dan lingkungannya, karena hal tersebut merupakan hubungan mutualisme dalam tatanan keseimbangan alam dan kehidupannya (Balancing Ecosytem). Adapun kemampuan manusia hidup dan mempertahankan kehidupannya (survive) dalam rangka pengembaraannya dimuka bumi adalah sebagai proses pembentukan pribadi individu yang peka terhadap alam dan lingkungannya.
Sumber daya alam terbagi dua, yaitu SDA yang tidak dapat diperbaharui (unrenewable) dan yang dapat diperbaharui (renewable). Keanekaragaman hayati termasuk didalam sumber daya alam yang dapat diperbaharui. Potensi sumber daya alam hayati tersebut bervariasi, tergantung dari letak suatu kawasan dan kondisinya. Pengertian istilah sumber daya alam hayati cukup luas, yakni mencakup sumber daya alam hayati, tumbuhan, hewan, bentang alam (landscape) dan sosial budaya. Indonesia memiliki keanekaragaman sumberdaya alam hayati yang berlimpah ruah sehingga dikenal sebagai negara MEGABIODIVERSITY. Keanekaragaman hayatinya terbanyak kedua diseluruh dunia.

POTENSI KEKAYAAN JENIS
Seperti telah diungkapkan diatas, Indonesia merupakan salah satu negara megabiodiversity. Meskipun luas arealnya hanya mencakup 1,3% dari seluruh luas permukaan bumi, namun kekayaan jenis makhluk hidupnya mencapai 17% dari seluruh total jenis yang ada didunia. Dari sekian besar kekayaan jenis di Indonesia, baru sebagian kecil yang telah benar-benar dipelajari dan dipahami oleh manusia.

NILAI-NILAI KEANEKARAGAMAN HAYATI
1. Nilai Ekologis
Setiap sumberdaya alam merupakan unsur ekosistem alam. Sebagai misal, suatu tumbuhan dapat berfungsi sebagai pelindung tata air dan kesuburan tanah. Suatu jenis satwa dapat menjadi key species yang menjadi kunci keseimbangan alam.

2. Nilai Komersial
Secara umum telah dipahami bahwa kehidupan manusia tergantung mutlak kepada sumber daya alam hayati. Keanekaragaman hayati mempunyai nilai komersial yang sangat tinggi. Sebgai gambaran, sebagian dari devisa Indonesia dihasilkan dari penjualan kayu dan bentuk-bentuk lain eksploitasi hutan.

3. Nilai Sosial dan Budaya
Keanekaragaman hayati mempunyai nilai sosial dan budaya yang sangat besar. Suku-suku pedalaman tidak dapat tinggal diperkotaan karena bagi mereka tempat tinggal adalah hutan dan isinya. Sama halnya dengan suku-suku yang tinggal dan menggantungkan hidup dari laut. Selain itu keanekaragaman hayati suatu negara lain didunia. Konstribusi-konstribusi ini tentunya memberikan makna sosial dan budaya yang tidak kecil.

4. Nilai Rekreasi
Keindahan sumber daya alam hayati dapat memberikan nilai untuk menjernihkan pikiran dan melahirkan gagasan-gagasan bagi yang menikmatinya. Kita sering sekali pergi berlibur ke alam, apakah itu gunung, gua atau laut dan lain sebagainya, hanya untuk merasakan keindahan alam dan ketika kembali ke perkotaan kita merasa berenergi untuk terus melanjutkan rutinitas dan kehidupan.

5. Nilai Penelitian dan Pendidikan
Alam sering kali menimbulkan gagasan-gagasan dan ide cemerlang bagi manusia. Nilai ini akan memberikan dorongan untuk mengamati fenomena alam dalam bentuk penelitian. Selain itu alam juga dapat menjadi media pendidikan ilmu pengetahuan alam, maka sangat diperlukan bahan untuk penelitian maupun penghayatan berbagai pengertian dan konsep suatu ilmu pengetahuan.

PENGERTIAN KEANEKARAGAMAN HAYATI
Definisi keanekaragaman hayati adalah: keanekaragaman makhluk hidup dan hal-hal yang berhubungan dengan ekologinya, dimana makhluk hidup tersebut terdapat. Keanekaragaman hayati mencakup tiga tingkatan yaitu:
1. Keanekaragaman genetik, 
merupakan keanekaragaman yang paling hakiki, karena keanekaragaman ini dapat berlanjut dan bersifat ditunkan. Keanekaragaman genetik ioni berhubungan dengan keistimewaan ekologi dan proses evolusi.

2. Keanekareagaman jenis, 
meliputi flora dan fauna. Beraneka ragam jenis memiliki perilaku, strategi hidup, bentuk, rantai makanan, ruang dan juga ketergantungan antara jenis satu dengan yang lainnya. Adanya keanekaragaman yang tinggi akan menghasilkan kestabilan lingkungan yang mantap.

3. Keanekaragaman Ekosistem, 
tercakup didalamnya genetic, jenis beserta lingkungannya. Keanekaragaman ekosistem merupakan keanekaragaman hayati yang paling kompleks. Berbagai keanekaragaman ekosistem yang ada di Indonesia misalnya ekosistem hutan dan pantai, hutan payau (mangrove), hutan tropika basah, terumbu karang, dan beberapa ekosistem pegunungan, perairan darat maupun lautan. Pada setiap ekosistem terdapat berbagai jenis organisme, baik flora maupun fauna, dan mereka memiliki tempat hidup yang unik.

KONSERVASI SUMBER DAYA ALAM HAYATI
Istilah konservasi mempunyai definisi pemanfaatan dan pengelolaan alam dan sumber daya alam yang bijaksana bagi kepentingan manusia. Konsep konservasi pada intinya adalah
MELINDUNGI, MEMANFAATKAN DAN MEMPELAJARI.
Kegiatan konservasi mencakup beberapa sektor, yaitu sektor ilmiah, sektor sosial budaya dan sektor pengolahannya. Ketiga sektor ini harus saling melengkapi mengikat satu sama lainnya. Sektor ilmiah melaksanakan kegiatan-kegiatan penelitian-penelitian dan pengamatan yang bersifat ilmiah, artinya kegiatan ini bersifat terbuka, terukur, sistematik nalar dan berkaitan dengan sistematik yang ada. Misalnya penelitian tentang satu jenis folra dan fauna tertentu, baik dari populasi atau habitatnya. Sektor sosial budaya dan ekonomi perlu dipahami, sebab latar belakang masyarakat berpengaruh terhadap perlindungan pelestarian dan pemanfaatan sumberdaya alam hayati. Sektor pengolahan adalah bagaimana manusia mengelola sumber daya alam yang ada secara bijaksana.

Dukungan yang mengglobal terhadap konservasi didasarkan karena penghargaan estetika, pengetahuan bahwa produk-produk yang berguna dapat saja berasal dari jenis yang belum dikenali, dan pengertian bahwa lingkungan harus menjadi fungsi biosphere yang tepat, khusunya yang berhubungan dengan kebutuhan manusia akan udara, air dan tanah, yang mana saat ini mengalami degradasi yang sangat cepat.

Akan tetapi usaha-usaha konservasi menjadi rumit dan kompleks dengan adanya kesulitan ekonomi yang dihadapi oleh setiap orang dimuka bumi ini. Para konservasionis murni akan memilih untuk melakukan pembangunan total pada kehidupan alam, akan tetapi kenyataan politik dan ekonomi memaksa bahwa pendekatan ini tidak dapat dilaksanakan.

Pada kenyataannya, tiga nilai yang terkandung dalam konsep konservasi, yaitu melindungi, memanfaatkan dan mempelajarri masih belum berjalan secara seimbang. Nilai pemanfaatan jauh lebih banyak diterapkan dari pada dua nilai yang lainnya. Inilah yang menjadi akar permasalahan dalam usaha-usaha konservasi dimana saja, terutama dinegara-negara berkembang.



 

sumber link :



Senin, 22 Oktober 2012

EKOLOGI DAN ILMU LINGKUNGAN


Ekologi dan ilmu lingkungan

Ekologi adalah ilmu yang mempelajari interaksi antara organisme dengan lingkungannya dan yang lainnya. Berasal dari kata Yunani oikos (“habitat”) danlogos (“ilmu”). Ekologi diartikan sebagai ilmu yang mempelajari baik interaksi antar makhluk hidup maupun interaksi antara makhluk hidup dan lingkungannya. Dalam ekologi, kita mempelajari makhluk hidup sebagai kesatuan atau sistem dengan lingkungannya.
Pembahasan ekologi tidak lepas dari pembahasan ekosistem dengan berbagai komponen penyusunnya, yaitu faktor abiotik dan biotik. Faktor biotik antara lain suhu, air, kelembapan, cahaya, dan topografi, sedangkan faktor biotik adalah makhluk hidup yang terdiri dari manusia, hewan, tumbuhan, dan mikroba. Ekologi juga berhubungan erat dengan tingkatan-tingkatan organisasi makhluk hidup, yaitu populasi, komunitas, dan ekosistem yang saling mempengaruhi dan merupakan suatu sistem yang menunjukkan kesatuan.
Ekologi, biologi dan ilmu kehidupan lainnya saling melengkapi dengan zoologi dan botani yang menggambarkan hal bahwa ekologi mencoba memperkirakan, dan ekonomi energi yang menggambarkan kebanyakan rantai makanan manusia dan tingkat tropik.
Ekowilayah bumi dan riset perubahan iklim ialah dua wilayah di mana ekolog (orang yang mempelajari ekologi) kini berfokus

Ekologi dalam politik

Ekologi menimbulkan banyak filsafat yang amat kuat dan pergerakan politik – termasuk gerakan konservasi, kesehatan, lingkungan,dan ekologi yang kita kenal sekarang. Saat semuanya digabungkan dengan gerakan perdamaian dan Enam Asas, disebut gerakan hijau. Umumnya, mengambil kesehatan ekosistem yang pertama pada daftar moral manusia dan prioritas politik, seperti jalan buat mencapai kesehatan manusia dan keharmonisan sosial, dan ekonomi yang lebih baik.
Orang yang memiliki kepercayaan-kepercayaan itu disebut ekolog politik. Beberapa telah mengatur ke dalam Kelompok Hijau, namun ada benar-benar ekolog politik dalam kebanyakan partai politik. Sangat sering mereka memakai argumen dari ekologi buat melanjutkan kebijakan, khususnya kebijakan hutan dan energi. Seringkali argumen-argumen itu bertentangan satu sama lain, seperti banyak yang dilakukan akademisi juga.

Ekologi dalam ekonomi

Banyak ekolog menghubungkan ekologi dengan ekonomi manusia:
  • Lynn Margulis mengatakan bahwa studi ekonomi bagaimana manusia membuat kehidupan. Studi ekologi bagaimana tiap binatang lainnya membuat kehidupan.
  • Mike Nickerson mengatakan bahwa “ekonomi tiga perlima ekologi” sejak ekosistem menciptakan sumber dan membuang sampah, yang mana ekonomi menganggap dilakukan “untuk bebas”.
Ekonomi ekologi dan teori perkembangan manusia mencoba memisahkan pertanyaan ekonomi dengan lainnya, namun susah. Banyak orang berpikir ekonomi baru saja menjadi bagian ekologi, dan ekonomi mengabaikannya salah. “Modal alam” ialah 1 contoh 1 teori yang menggabungkan 2 hal itu.

Ekologi dalam kacamata antropologi

Terkadang ekologi dibandingkan dengan antropologi, sebab keduanya menggunakan banyak metode buat mempelajari satu hal yang yang kita tak bisa tinggal tanpa itu. Antropologi ialah tentang bagaimana tubuh dan pikiran kita are dipengaruhi lingkungan kita, ekologi ialah tentang bagaimana lingkungan kita dipengaruhi tubuh dan pikiran kita.
Beberapa orang berpikir mereka hanya seorang ilmuwan, namun paradigma mekanistik bersikeras meletakkan subyek manusia dalam kontrol objek ekologi — masalah subyek-obyek. Namun dalam psikologi evolusioner atau psikoneuroimunologi misalnya jelas jika kemampuan manusia dan tantangan ekonomi berkembang bersama. Dengan baik ditetapkan Antoine de Saint-Exupery: “Bumi mengajarkan kita lebih banyak tentang diri kita daripada seluruh buku. Karena itu menolak kita. Manusia menemukan dirinya sendiri saat ia membandingkan dirinya terhadap hambatan.”
Bentuk Powerpoint :
Contoh Video :
Kesimpulan :
setelah saya membaca dan memahami, saya dapat mengambil kesimpulan bahwa ekologi dan ilmu lingkungan saling melengkapi dengan zoologi dan botani yang menggambarkan hal bahwa ekologi mencoba memperkirakan, dan ekonomi energi yang menggambarkan kebanyakan rantai makanan manusia dan tingkat tropik.
dan jaganlah merusak lingkungan sekitar kita ini, karena akan mengakibatkan bencana alam yang terus menerus datang.
Sumber :
http://youtube.com

Rabu, 09 Mei 2012

Masalah Radiasi Tegangan Tinggi



 [SUTET.png] 
Rencana pemerintah untuk meningkatan kesejahteraan rakyat melalui industrialisasi tampaknya merupakan suatu rencana yang patut didukung oleh semua pihak. Berbagai investasi dalam bidang industri pada saat ini telah banyak dilakukan oleh pihak swasta, baik melalui penanaman modal dalam negeri (PMDN) maupun melalui penanaman modal asing (PMA). Sedangkan dari pihak pemerintah sendiri rupanya juga sudah cukup banyak yang dikerjakan melalui sektor industri, antara lain melalui kiprah Badan Usaha Milik Negara (BUMN) yang tergabung dalam kelompok industri strategis (BPIS) dan juga melalui industri petrokimia, industri semen, industri logam dan industri berat lainnya.

Tidak bisa dipungkiri bahwa semua kegiatan industri seperti di atas hanya dapat berjalan apabila tenaga listrik tersedia cukup memadai. Untuk mengatasi kebutuhan tenaga listrik tersebut, pihak pemerintah juga sudah memikirkannya antara lain melalui pembangunan pembangkit tenaga listrik berskala besar seperti yang ada di PLTU Suralaya (Jawa Barat), PLTU Paiton (Jawa Timur) dan PLTU Tanjung Jati (Jawa Tengah).

Selain dari itu, pemerintah juga mengizinkan kepada pihak swasta untuk menanamkan modal dalam bidang penyediaan tenaga listrik dalam rangka pemenuhan kebutuhan listrik untuk industrialisasi. Hanya saja penjualan tenaga listrik yang dihasilkan oleh swasta kepada konsumen masih tetap melalui PLN sesuai dengan ketentuan perundangan yang berlaku.

Interkoneksi dan Transmisi Tenaga listrik

Pembangunan dalam sektor industri pada saat ini, sebenarnya merupakan kelanjutan pembangunan dari sektor-sektor lainnya yang telah dilakukan pada PJP I yang lalu. Pada PJP II ini pembangunan sektor industri diarahkan untuk menuju kepada kemandirian perekonomian nasional, meningkatkan kemampuan bersaing dan menaikkan pangsa pasar baik pangsa pasar dalam negeri maupun pangsa pasar luar negeri.

Untuk dapat melakukan pembangunan sektor industri, masalah tenaga listrik merupakan salah satu faktor penentu yang harus diperhatikan dengan cermat. Kenaikan penyediaan tenaga listrik (daya terpasang kumulatif) sejak awal Pelita I sampai dengan akhir PJP I yang lalu, tampaknya merupakan indikasi keseriusan pemerintah untuk melakukan pembangunan sektor industri, seperti yang tampak pada grafik (terlampir).

Ketersediaan tenaga listrik selama PJP I yang meningkat pesat dengan laju pertumbuhan rata-rata 12,4 % per tahun dan pada akhir PJP I meningkat menjadi 17,5 % per tahun melebihi angka yang direncanakan yaitu 14,6 % per tahun. Laju pertumbuhan konsumsi tenaga listrik di Indonesia ternyata di atas angka rata-rata di Asia yang hanya sekitar 7,9 % per tahun dan jauh di atas rata-rata petumbuhan konsumsi tenaga listrik dunia yang hanya sekitar 3,6 % per tahun. Laju pertumbuhan tenaga listrik yang tinggi ini dapat dicapai dengan mengembangkan sistem jaringan terpadu.

Pengembangan sistem jaringan terpadu meliputi sistem interkoneksi pusat-pusat pembangkit tenaga listrik yang ada serta membangun sistem transmisi dari pusat pembangkit ke gardu induk. Pada saat ini interkoneksi di Indonesia baru dilaksanakan di Pulau Jawa, yaitu dengan sistem tegangan tinggi (75 kV dan 150 kV) serta tegangan ekstra tinggi (500 kV) yang menghubungkan beberapa PLTA dan PLTU yang terdapat di Jawa Barat, Jawa Tengah dan Jawa Timur, yaitu antara pusat pembangkit di Suralaya, Saguling, Semarang, Gresik dan Paiton. Sedangkan sistem distribusi (penyaluran) di Indonesia saat ini menggunakan tegangan 20 kV untuk primer dan 220/380 V untuk sekunder dengan frekuensi 50 Hz.

Tujuan dari sistem interkoneksi dan transmisi secara terpadu ini antara lain untuk meningkatkan kemampuan suplai tenaga listrik, agar pada saat terjadi gangguan pada salah satu pusat pembangkit tidak terlalu berpengaruh pada konsumen. Sebagai contoh gangguan adalah pada PLTA yang sangat dipengaruhi oleh debit air, tandon air, limpahan dan daya muatnya. Sedangkan pada PLTU gangguan dapat berasal dari efisiensi kerja ketel uap, turbin dan sistem peralatan lainnya.

Sistem interkoneksi dan transmisi tersebut sering pula dinamakan dengan sistem Saluran Udara Tegangan (Ekstra) Tinggi yang sering disingkat dengan SUTET. Sistem interkoneksi dan transmisi tersebut saat ini memang harus dilakukan agar sistem jaringan terpadu dalam rangka pemenuhan kebutuhan tenaga listrik dapat dicapai. Namun dengan meningkatnya kesadaran masyarakat tentang masalah keselamatan kerja dan keselamatan lingkungan, maka masalah interkoneksi dan transmisi (SUTET) dengan tegangan tinggi atau ekstra tinggi menjadi suatu persoalan yang harus diperhatikan dengan cermat apabila jaringan tegangan tinggi tersebut melewati daerah permukiman.

Kasus jaringan tegangan tinggi yang melewati daerah Gresik dan daerah Parung kiranya dapat menjadi pelajaran yang menarik untuk perencanaan interkoneksi dan transmisi pada masa mendatang. Apa yang menyebabkan masyarakat menjadi cemas bila daerahnya dilewati jaringan tegangan tinggi, tidak lain adalah karena rasa khawatir dan takut terkena radiasi tegangan tinggi. Apa sebenarnya radiasi tegangan tinggi tersebut akan dibahas pada uraian berikut ini.

Apakah Radiasi Tegangan Tinggi itu?


Masalah radiasi tegangan tinggi sebenamya sudah sejak lama dipikirkan oleh para ahli, paling tidak semenjak James Clark Maxwell mengumumkan teorinya tentang :A dynamic theory of the electromagnetic field, suatu teori revolusioner tentang pergeseran arus yang diramalkan dapat menimbulkan gelombang elektromagnet yang merambat dengan kecepatan cahaya. Pada waktu teori tersebut diumumkan (tahun 1865) Maxwell belum menyebutnya sebagai suatu radiasi seperti yang kita kenal saat ini.

Secara teoritis elektron yang membawa arus listrik pada jaringan tegangan tinggi akan bergerak lebih cepat bila perbedaan tegangannya makin tinggi. Elektron yang membawa arus listrik pada jaringan interkoneksi dan juga pada jaringan transmisi, akan menyebabkan timbulnya medan magnet maupun medan listrik. Elektron bebas yang terdapat dalam udara di sekitar jaringan tegangan tinggi, akan terpengaruh oleh adanya medan magnet dan medan listrik, sehingga gerakannya akan makin cepat dan hal ini dapat menyebabkan timbulnya ionisasi di udara. Ionisasi dapat terjadi karena elektron sebagai partikel yang bermuatan negatif dalam gerakannya akan bertumbukan dengan molekul-molekul udara sehingga timbul ionisasi berupa ion-ion dan elektron baru. Proses ini akan berjalan terus selama ada arus pada jaringan tegangan tinggi dan akibatnya ion dan elektron akan menjadi berlipat ganda terlebih lagi bila gradien tegangannya cukup tinggi. Udara yang lembab karena adanya pepohon di bawah jaringan tegangan tinggi akan lebih mempercepat terbentuknya pelipatan ion dan elektron yang disebut dengan avalanche.

Akibat berlipatgandanya ion dan elektron ini (peristiwa avalanche) akan menimbulkan korona berupa percikan busur cahaya yang seringkali disertai pula dengan suara mendesis dan bau khusus yang disebut dengan bau ozone. Peristiwa avalanche dan timbulnya korona akibat adanya medan magnet dan medan listrik pada jaringan tegangan tinggi inilah yang sering disamakan dengan radiasi gelombang elektromagnet atau radiasi tegangan tinggi.

Berbahayakah Radiasi Tegangan Tinggi itu?


Secara umum setiap bentuk radiasi gelombang elektromagnet dapat berpengaruh terhadap tubuh manusia. Sel-sel tubuh yang mudah membelah adalah bagian yang paling mudah dipengaruhi oleh radiasi. Tubuh yang sebagian besar berupa molekul air, juga mudah mengalami ionisasi oleh radiasi. Seberapa jauh pengaruhnya terhadap tubuh manusia, tergantung pada batas-batas aman yang diizinkan. Sebagai contoh untuk radiasi nuklir yang aman bagi manusia (untuk pekerja radiasi) adalah dosis di bawah 5000 mili Rem per tahun, sedangkan untuk masyarakat umum adalah 10 % dari harga tersebut. Lantas bagaimanakah dengan batasan aman untuk radiasi tegangan tinggi?

Sejauh ini batasan aman untuk radiasi tegangan tinggi masih terus diteliti dan para ahli di seluruh dunia masih belum sampai kepada kata sepakat tentang batasan aman tersebut. Penelitian pengaruh radiasi tegangan tinggi sejauh ini baru diketahui akibatnya terhadap binatang percobaan di laboratorium. Radiasi tegangan tinggi (radiasi elektromagnet) ternyata mempengaruhi sifat kekebalan (imun) tikus-tikus percobaan.

Apakah radiasi tegangan tinggi juga bersifat cocarcinogenik (merangsang timbulnya kanker), ternyata masih dalam taraf dugaan saja, karena tikus-tikus percobaan yang dikenai radiasi tegangan tinggi tidak ada yang menjadi terserang kanker, walaupun diramalkan kemungkinan terkena kanker dapat meningkat karenanya. Memang terdapat perbedaan antara manusia dan tikus, sehingga penelitian terhadap tikus-tikus tersebut mungkin lain hasilnya terhadap manusia. Walaupun demikian, usaha manusia untuk mengurangi dampak teknologi berupa jaringan interkoneksi dan transmisi tegangan tinggi yang dapat menimbulkan kemungkinan terkena radiasi tegangan tinggi tetap perlu dilakukan, agar diperoleh kepastian mengenai harga batas aman bagi manusia.

Satuan untuk mengukur radiasi tegangan tinggi tidaklah sama dengan satuan untuk radiasi nuklir yang menggunakan satuan REM, singkatan Rontgen Equivalent of Man. Satuan radiasi tegangan tinggi masih menggunakan satuan Weber/meter2, yaitu satuan flux dalam sistem mks. Mengingat bahwa l Weber/m2 sama dengan 104 gauss, sedangkan satuan untuk induksi magnetik telah ditentukan dengan satuan Tesla yang besarnya sama dengan 104 gauss, maka satuan radiasi tegangan tinggi dapat juga menggunakan satuan Tesla yang identik dengan Weber/m2.

Walaupun belum ada kata sepakat untuk menentukan batas aman bagi radiasi tegangan tinggi, namun Amerika Serikat sebagai negara industri yang banyak menggunakan jaringan tegangan tinggi, telah menetapkan batas aman sebesar 0,2 mikro Weber/m2. Sedangkan Rusia (bekas Uni Sovyet) menetapkan batas aman radiasi tegangan tinggi dengan faktor 1000 lebih rendah dari yang telah ditetapkan Amerika Serikat. Adanya perbedaan penetapan batas aman ini disebabkan karena penelitian mengenai dampak radiasi tegangan tinggi terhadap manusia masih belum selesai dan masih terus dilakukan. Hal menarik dari penentuan harga batas aman tersebut adalah bahwa Amerika Serikat yang menetapkan harga batas aman tersebut adalah Radiation Protection Board, sedangkan di Rusia oleh Ministry Of Health (Departemen Kesehatan), sedangkan di Australia oleh Australian Radiation Protection Society (ARPS), suatu lembaga non pemerintah.

Lantas bagaimanakah dengan di Indonesia? Siapakah yang akan menetapkan harga batas aman radiasi tegangan tinggi? Apakah BATAN, apakah Departemen Perindustrian, apakah Departemen Kesehatan, apakah Menteri Negara Lingkungan Hidup ataukah pihak PLN sendiri yang banyak berkaitan dengan masalah jaringan tegangan tinggi. Masalah ini kiranya perlu segera ditetapkan, mengingat bahwa PLN masih akan membangun jaringan tegangan tinggi sebagai interkoneksi dan transmisi sepanjang 2000 km.

Mudah-mudahan penetapan batas aman radiasi tegangan tinggi di Indonesia berdasarkan pertimbangan yang matang, sehingga masyarakat tidak menjadi takut dan khawatir bila daerahnya akan dilewati jaringan tegangan tinggi. Selain dari itu, penjelasan yang transparan dari pihak PLN kepada masyarakat perlu diberikan, agar program interkoneksi dan transimisi dapat berjalan lancar, sehingga program pembangunan sektor industri dapat dilaksanakan dengan sebaik-baiknya yang pada akhirnya kesejahteraan masyarakat diharapkan akan dapat meningkat. Semoga.

TEGANGAN TINGGI


Keandalan dan Kualitas Listrik


Sistem Tenaga Listrik

Untuk lebih mudah memahami keandalan dan kualitas listrik, kita harus mengetahui apa yang dinamakan “Sistem Tenaga Listrik” yang akan mempresentasikan cara pembangkitan, penyaluran dan pendistribusian energi listrik.
Secara umum sistem tenaga listrik terdiri dari:

1. Pusat Pembangkit Listrik (Power Plant);
Yaitu tempat energi listrik pertama kali dibangkitkan, dimana terdapat turbin sebagai penggerak mula (prime mover) dan generator yang membangkitkan listrik. Biasanya di pusat pembangkit listrik juga terdapat gardu induk (GI). Peralatan utama pada gardu induk antara lain: Transformer, yang berfungsi untuk menaikkan tegangan generator (11,5 kV) menjadi tegangan transmisi / tegangan tinggi (150 kV) dan juga peralatan pengaman dan pengatur. Jenis pusat pembangkit yang umum antara lain: PLTA (Pusat Listrik Tenaga Air), PLTU (Pusat Listrik Tenaga Uap), PLTG (Pusat Listrik Tenaga Gas), PLTN (Pusat Listrik Tenaga Nuklir).

2. Saluran Transmisi (Transmission Line);

Berupa kawat-kawat yang di pasang pada menara atau tiang dan bisa juga melalui kabel yang di pendam di bawah permukaan tanah, saluran transmisi berfungsi menyalurkan energi listrik dari pusat pembangkit, yang umumnya terletak jauh dari pusat beban, ke gardu induk penurun tegangan yang memiliki transformer penurun tegangan dari tegangan transmisi ke tegangan distribusi (menengah). Saluran transmisi ini mempunyai tegangan yang tinggi agar dapat meminimalkan rugi-rugi daya (power losses) disaluran. Contoh dari saluran transmisi di Indonesia adalah : SUTT (Saluran Udara Tegangan Tinggi, dengan tegangan kerja 70--150 kV), SUTET (Saluran Udara Tegangan Ekstra Tinggi, dengan tegangan kerja 500 kV).


3. Sistem Distribusi;
Yang merupakan sub-sistem tersendiri yang terdiri dari: Pusat Pengatur Distribusi ( Distribution Control Centre, DCC ) , Saluran tegangan menengah (6 kV dan 20 kV, biasa juga disebut tegangan distribusi primer) yang merupakan saluran udara atau kabel tanah, Gardu Distribusi (GD) tegangan menengah yang terdiri dari panel-panel pengatur tegangan menengah dan trafo sampai dengan panel-panel distribusi tegangan rendah (380 V, 220 V) yang menghasilkan tegangan kerja/tegangan jala-jala untuk industri dan konsumen perumahan.

Pentingnya Keandalan dan Kualitas Listrik

Pemadaman listrik yang terlalu sering dengan waktu padam yang lama dan tegangan listrik yang tidak stabil, merupakan refleksi dari keandalan dan kualitas listrik yang kurang baik, dimana akibatnya dapat dirasakan secara langsung oleh pelanggan.

Sistem tenaga listrik yang andal dan energi listrik dengan kualitas yang baik atau memenuhi standar, mempunyai kontribusi yang sangat penting bagi kehidupan masyarakat modern karena peranannya yang dominan dibidang industri, telekomunikasi, teknologi informasi, pertambangan, transportasi umum, dan lain-lain yang semuanya itu dapat beroperasi karena tersedianya energi listrik. Perusahaan-perusahaan yang bergerak diberbagai bidang sebagaimana disebutkan diatas, akan mengalami kerugian cukup besar jika terjadi pemadaman listrik tiba-tiba atau tegangan listrik yang tidak stabil, dimana aktifitasnya akan terhenti atau produk yang dihasilkannya menjadi rusak atau cacat.

Negara-negara yamg memiliki sistem pembangkit, transmisi dan distribusi energi listrik dengan teknologi dan peralatan mutakhir serta manajemen yang baik seperti Amerika Serikat, Jepang, Perancis dan negara-negara maju lainnya benar-benar memberikan perhatian khusus terhadap keandalan dan kualitas listrik karena pengaruhnya yang krusial terhadap roda perekonomian.

Parameter-Parameter yang Menentukan Keandalan dan Kualitas Listrik

Ukuran keandalan dan kualitas listrik secara umum ditentukan oleh beberapa parameter sebagai berikut:

1. Frekuensi dengan satuan hertz (Hz);
Yaitu jumlah siklus arus bolak-balik (alternating current, AC) per detik. Beberapa negara termasuk Indonesia menggunakan frekuensi listrik standar, sebesar 50 Hz.

Frekuensi listrik ditentukan oleh kecepatan perputaran dari turbin sebagai penggerak mula. Salah satu contoh akibat dari frekuensi listrik yang tidak stabil adalah akan mengakibatkan perputaran motor listrik sebagai penggerak mesin-mesin produksi di industri manufaktur juga tidak stabil, dimana hal ini akan mengganggu proses produksi.

Gangguan-gangguan yang terjadi pada sistem frekuensi:
a. Penyimpangan terus-menerus (Continuous Deviation); frekuensi berada diluar batasnya pada saat yang lama (secara terus-menerus), frekuensi standar 50 Hz dengan toleransi 0,6 Hz ------ (49,4 – 50,6 Hz)
b. Penyimpangan sementara (Transient Deviation); penurunan atau penaikkan frekuensi secara tiba-tiba dan sesaat.

2. Tegangan atau voltage dengan satuan volt (V);
Tegangan yang baik adalah tegangan yang tetap stabil pada nilai yang telah ditentukan. Walaupun terjadinya fluktuasi (ketidak stabilan) pada tegangan ini tidak dapat di hindarkan, tetapi dapat di minimalkan.

Gangguan pada tegangan antara lain :
a. Fluktuasi Tegangan; seperti: Tegangan Lebih (Over Voltage), Tegangan Turun (Drop Voltage) dan tegangan getar (flicker voltage)

Tegangan lebih pada sistem akan mengakibatkan arus listrik yang mengalir menjadi besar dan mempercepat kemunduran isolasi (deterioration of insulation)
sehingga menyebabkan kenaikan rugi-rugi daya dan operasi, memperpendek umur kerja peralatan dan yang lebih fatal akan terbakarnya peralatan tersebut. Peralatan-peralatan yang dipengaruhi saat terjadi tegangan lebih adalah transformer, motor-motor listrik, kapasitor daya dan peralatan kontrol yang menggunakan coil/kumparan seperti solenoid valve, magnetic switch dan relay. tegangan lebih biasanya disebabkan karena eksitasi yang berlebihan pada generator listrik (over excitation), sambaran petir pada saluran transmisi, proses pengaturan atau beban kapasitif yang berlebihan pada sistem distribusi.

Tegangan turun pada sistem akan mengakibatkan berkurangnya intensitas cahaya (redup) pada peralatan penerangan; bergetar dan terjadi kesalahan operasi pada peralatan kontrol seperti automatic valve, magnetic switch dan auxiliary relay; menurunnya torsi pada saat start (starting torque) pada motor-motor listrik. Tegangan turun biasanya disebabkan oleh kurangnya eksitasi pada generator listrik (drop excitation), saluran transmisi yang terlalu panjang, jarak beban yang terlalu jauh dari pusat distribusi atau peralatan yang sudah berlebihan beban kapasitifnya.

b.Tegangan Kedip (Dip Voltage); adalah turunnya tegangan (umumnya sampai 20%) dalam perioda waktu yang sangat singkat (dalam milli second). Penyebabnya adalah hubungan singkat (short circuit) antara fasa dengan tanah atau fasa dengan fasa pada jaringan distibusi. Tegangan kedip dapat mengakibatkan gangguan pada: stabilisator tegangan arus DC, electromagnetic switch, variable speed motor, high voltage discharge lamp dan under voltage relay.

c. Harmonik Tegangan (Voltage Harmonic); adalah komponen-komponen gelombang sinus dengan frekuensi dan amplitudo yang lebih kecil dari gelombang asalnya (bentuk gelombang yang cacat), contoh :
t) kV.
wGelombang asal : (28,3) sin (
t) kV.
wHarmonik ke-3 : (28,3/3) sin (3
t) kV.
wHarmonik ke-5 : (28,3/5) sin (5

Tegangan harmonik dapat mengakibatkan: panas yang berlebihan, getaran keras, suara berisik dan terbakar pada peralatan capacitor reactor (power capacitor); meledak pada peralatan power fuse (power capacitor); salah beroperasi pada peralatan breaker; suara berisik dan bergetar pada peralatan rumah tangga (seperti TV, radio, lemari pendingin dsb.); dan pada peralatan motor listrik, elevator dan peralatan-peralatan kontrol akan terjadi suara berisik, getaran yang tinggi, panas yang berlebihan dan kesalahan operasi. Kontribusi arus harmonik akan menyebabkan cacat (distorsi) pada tegangan, tergantung seberapa besar kontribusinya.

Cara mengurangi pengaruh tegangan harmonik yang terjadi pada sistem adalah dengan memasang harmonic filter yang sesuai pada peralatan-peralatan yang dapat menyebabkan timbulnya harmonik seperti arus magnetisasi transformer, static VAR compensator dan peralatan-peralatan elektronika daya (seperti inverter, rectifier, converter, dsb.)

d. Ketidak seimbangan tegangan (Unbalance Voltage); umumnya terjadi di sistem distribusi karena pembebanan fasa yang tidak merata.

Gangguan-gangguan tegangan sebagaimana dijelaskan diatas dapat menyebabkan peralatan-peralatan yang menggunakan listrik, beroperasi secara tidak normal dan yang paling fatal adalah kerusakan atau terbakarnya peralatan.

3. Interupsi atau Pemadaman Listrik;
Interupsi ini dapat dibedakan menjadi:
a. Pemadaman yang direncanakan (Planned Interruption/scheduled interruption); adalah pemadaman yang terjadi karena adanya pekerjaan perbaikan atau perluasan jaringan pada sistem tenaga listrik.
b. Pemadaman yang tidak direncanakan (Unplanned Interruption); adalah pemadaman yang terjadi karena adanya gangguan pada sistem tenaga listrik seperti hubung singkat (short circuit).

Parameter-parameter yang menentukan keandalan dan kualitas listrik sebagaimana dijelaskan diatas adalah sesuatu yang meyakinkan (measureable) dan dapat diminimalkan dengan cara mengkoreksi terhadap konfigurasi dan peralatan pada sistem, manajemen serta sumber daya manusia yang handal dari perusahaan yang menjual energi listrik.

kalkulasi tegangan jatuh listrik



Apa arti praktis kalkulasi tegangan jatuh listrik bagi seorang perencana listrik ketenagaan? Kalkulasi ini adalah sama artinya dengan perencanaan ukuran-ukuran kabel daya dan sistem proteksi listrik ketenagaan yang aman suatu bangunan atau utilitas plant. Contohnya jika seorang insinyur listrik diminta untuk merancang ukuran kabel 3-fasa untuk suatu pompa submersible listrik 150 HP, 380 V yang akan digunakan sebagai pompa banjir( katakan banjir lumpur Porong Sidoarjo). Pompa tersebut berjarak 125 meter dari sumber listriknya(atau panel induknya), berapa ukuran kabel yang aman, tidak panas tetapi ekonomis, kemudian berapa ukuran rating pemutus tenaga (Circuit Breaker atau Fuse) agar dapat memproteksi kabel secara aman terhadap beban lebih.

Seorang mahasiswa calon insinyur atau ahli madya yang serius belajar disiplin ilmunya seharusnya menguasai program spread-sheet excel sehingga kalkulasi kelistrikan secara umum akan lebih cepat difahami, dilatih, dan diingat terus sebagai pegangan bagi seorang praktisi listrik ketenagaan. Karena variabel-variabel ukuran kabel yang banyak, dan pembebanan arus yang juga bervariasi tergantung dari kebutuhan beban listrik, maka menggunakan program excel adalah merupakan keharusan. Berikut ini bentuk formulasi dasar tegangan jatuh dalam bentuk format excel/ppt yang dapat dikembangkan lebih jauh untuk aplikasi yang berbeda.

Kalkulasi tegangan jatuh listrik sebenarnya berdasarkan hukum Ohm kemudian ditambahkan faktor reaktansi (induktif atau kapasitif) dan faktor daya, maka formulasinya untuk aplikasi tegangan rendah sampai tegangan menengah 20 KV dapat ditulis sbb :

Tegangan jatuh = 1.732*R*I*cos f + 1.732*X*I*sin f

dimana 1.732 adalah hasil akar 3 ( beban 3-fasa), I adalah arus beban, R adalah resistansi arus bolak-balik AC ( bukan arus searah DC) , X adalah reaktansi induktif, dan cos f adalah faktor daya.

Kemudian data-data resistansi kabel dapat dicari dari buku katalog spesifikasi kabel seperti Supreme, Kabel Metal, Kabelindo, Tranka, Voksel yang bisa diminta langsung ke fabrikannya atau produk luar negeri untuk industri perminyakan seperti Pirelli atau Okonite. Data resistansi kabel pada umumnya disajikan dalam bentuk satuan Ohm per-kilometer sebagai resistansi arus searah DC, artinya resistansi terbaca jika kita mengukur dengan alat ukur Ohm-meter. Yang kita perlukan adalah resistansi AC (arus bolak-balik), kalau ditampilkan resistansi AC pada suhu 90 derajat Celsius maka resistansinya menjadi lebih besar. Umumnya suhu inti konduktor kabel yang diizinkan adalah 70 derajat Celsius, jadi resistansinya lebih kecil dari tabel.

Rumus tegangan jatuh diatas dapat diaplikasikan untuk arus searah DC maka faktor daya = 1 sehingga formulasinya untuk kabel 2 jalur adalah Tegangan jatuh = 2*R*I dimana R adalah resistansi DC ( hasil pengukuran alat Ohm-meter) dan I adalah arus searah DC.

Berapa jatuh tegangan kerja yang diizinkan. Jika tegangan rumah 220 Volt dan misalnya kita menerima dari sumber PLN hanya 200 Volt berari jatuh tegangan 10%, maka hal ini akan mengganggu performance motor listrik mesin pendingin (Air Conditioner atau Kulkas) atau pompa air. Jatuh tegangan maksimum 5% dari sumber ke beban konsumen masih dapat diterima sistem (misalnya sumber 400 Volt dan kita sebagai konsumen menerima tegangan kerja setelah dibebani sebesar 380 Volt), tetapi untuk perencanaan terkadang ada yang menetapkan 2,5 %, tergantung untuk aplikasi dimana dan semuanya akan mempengaruhi total biaya instalasi
listrik.

Sebagai referensi online, pembaca dapat meng-click link-link situs
Okonite atau General Electric untuk studi perbandingan aplikasi tegangan jatuh, tetapi ingat rating tegangan listrik Amerika berbeda dengan Indonesia, jadi kita harus mengkonversikan dahulu dan pula mereka menggunakan standar ukuran kabel AWG( lihat tabel konversi AWG dan mm2 dibawah). Silahkan pembaca melatih formulasi tegangan jatuh ini dengan excel dengan data dari berbagai sumber dan silahkan dikembangkan lebih jauh.

Selasa, 01 Mei 2012

controlling

Pengertian Controlling atau pengawasan

Pengertian Controlling di dalam bahasa Indonesia dapat ditafsirkan sebagai
pengawasan atau pengendalian sehingga dalam bahasa Inggris pengertian
pengawasan dan pengendalian tetap dipergunakan dengan Istilah controlling.
Controlling baik yang dalam pengertian pengawasan atau pengendalian oleh sebagian besar masyarakat sering ditafsirkan sebagai usaha dari manajer atau lembaga pengawasan sebagai kegiatan untuk mencarikesalahan.22 Padahal fungsi pengawasan atau pengendalian tersebut adalah sebagaisalah satu keguatan untuk mengadakan perbaikan bila hasil atau jasa yangsudah distandarisasi itu tidak sesuai dengan hasil yang diharapkan.Standarisiasi merupakan salah satu tindakan awal dari prosesperencanaan dan standar itu harus terandalkan dan dapat dipercayai sebagai
dasar untuk mengevaluasi dan membandingkan dalam kegiatan pengawasan.
Standarisasi dari proses perencanaan ditujukan untuk pencapaiansasaran atau efektifitas organisasi. Sedang kontrol baik dalam pengertianpengawasan atau pengendalian itu lebih difokuskan pada hasil atauproduktifitas baik yang berupa barang atau jasa agar hasil usaha suatuorganisasi itu sangat efisien.Jadi kontrol dapat disimpulkan lebih memusatkan pada efisiensi danperencanaan atau planning lebih memusatkan pada efektivitas.

Beberapa pakar memberikan definisi controlling sebagai berikut:
a. George R. Terry
Pengawasan adalah untuk menentukan apa yang telah dicapai,
mengadakan evaluasi atasannya, dan mengambil tindakan-tindakan
korektif, bila diperlukan, untuk menjamin agar hasilnya sesuai dengan
rencana. b. Newman
Pengawasan adalah suatu usaha untuk menjamin agar pelaksanaan sesuai
dengan rencana.
c. Henry Fayol
Pengawasan terdiri dengan maksud untuk memperbaikinya dan mencegah
terulangnya kembali.
d. Soejamto
Segala usaha atau kegiatan untuk mengetahui sasaran obyek yang
diperiksa.
e. Sondang Siagian
Proses pengamatan daripada pelaksanaan seluruh kegiatan organisasi
untuk menjamin agar dimana pekerjaan yang sedang dilaksanakan
berjalan sesuai dengan rencana yang telah ditentukan sebelumnya
f. Soekarno K
Suatu proses yang menentukan tentang apa yang harus dikerjakan agar apa
yang diselenggarakan sejalan dengan rencana.

actuanting

Actuating(pelaksanaan)


Actuating adalah suatu tindakan untuk mengusahakan agarsemua agar semua anggota kelompok berusaha untuk mencapaisasaran yang sesuai dengan perencanaan manejerial dan usaha-usahaorganisasi. Jadi actuating artinya menggerakkan orang-orang agarmau bekerja dengan sendirinya atau dengan kesadaran secarabersama-sama untuk mencapai tujuan dikehendaki secara efektif.Dalam hal ini yang dibutuhka adalah kepemimpinan.Actuating adalah Pelaksanaan untuk bekerja. Untukmelaksanakan secara fisik kegiatan dari aktivitas tesebut, makamanajer mengambil tindakan-tindakannya kearah itu. Seperti : Leadership ( pimpinan ), perintah, komunikasi dan conseling( nasehat). Actuating disebut juga“ gerakan aksi “ mencakup kegiatan yangdilakukan seorang manager untuk mengawali dan melanjutkankegiatan yang ditetapkan oleh unsur-unsur perencanaan danpengorganisasian agar tujuan-tujuan dapat tercapai.Dari seluruh rangkaian proses manajemen, pelaksanaan(actuating) merupakan fungsi manajemen yang paling utama. Dalamfungsi perencanaan dan pengorganisasian lebih banyak berhubungandengan aspek-aspek abstrak proses manajemen, sedangkan fungsiactuating justru lebih menekankan pada kegiatan yang berhubunganlansung dengan orang-orang dalam organisasi. Dalam hal ini,George R. Terry (1986) mengemukakan bahwa actuating merupakanusaha menggerakkan anggota-anggota kelompok sedemikian rupahingga mereka berkeinginan dan berusaha untuk mencapai sasaranperusahaan dan sasaran anggota-anggota perusahaan tersebut olehkarena para anggota itu juga ingin mencapai sasaran tersebut. Dari pengertian di atas, pelaksanaan (actuating) tidak lainmerupakan upaya untuk menjadikan perencanaan menjadikenyataan, dengan melalui berbagai pengarahan dan pemotivasianagar setiap karyawan dapat melaksanakan kegiatan secara optimal sesuai dengan peran, tugas dan tanggung jawabnya.
Hal yang penting untuk diperhatikan dalam pelaksanan (actuating)ini adalah bahwa seorang karyawan akan termotivasi untukmengerjakan sesuatu jika :a. Merasa yakin akan mampu mengerjakan,b. Yakin bahwa pekerjaan tersebut memberikan manfaat bagidirinya,c. Tidak sedang dibebani oleh problem pribadi atau tugas lain yanglebih penting, atau mendesak,d. Tugas tersebut merupakan kepercayaan bagi yang bersangkutane. Hubungan antar teman dalam organisasi tersebut harmonis.Fungsi dari Pelaksanaan (actuating) adalah sebagai berikut:1. Mengimplementasikan proses kepemimpinan,pembimbingan, dan pemberian motivasi kepada tenagakerja agar dapat bekerja secara efektif dan efisien dalampencapaian tujuan2. Memberikan tugas dan penjelasan rutin mengenaipekerjaan3. Menjelaskan kebijakan yang ditetapkan4. Proses implementasi program agar dapat dijalankan olehseluruh pihak dalam organisasi serta proses memotivasiagar semua pihak tersebut dapat menjalankan tanggungjawabnya dengan penuh kesadaran danproduktifitas yang tinggi.

Sumber: 
http://id.shvoong.com/social-sciences/sociology/2205936-pengertian-pelaksanaan-actuating/#ixzz1t7deFhtq